Geotechnical

For over 40 years Robertson Geo has been developing and producing products, techniques and technologies for Geotechnical investigations. Reliable and consistent quality data from borehole logging provides an important understanding of rock strength and the presence of fractures that is essential for the consideration of the location and positioning of new build construction and its foundations.
As the world’s largest provider of slimhole logging instrumentation, Robertson Geo designs and builds its equipment and technologies at its manufacturing facility in Deganwy, North Wales UK. Purchasers of equipment include geological surveyors, water authorities, mining houses, civil engineering consultants, aid organisations, drilling contractors and oil companies worldwide.
It is vital to understand the subsurface characteristics for geotechnical applications and construction projects. Robertson Geo is a specialist and very experienced international provider of wireline logging data acquisition and interpretation for these industries, with its technologies in worldwide everyday use.

Geotechnical

Wireline data acquisition is a recognised, well established and cost and results effective methodology for site investigations, determining the subsurface properties of the formation and the presence of fractures, it is very important information for the location and design of new structures and foundations. Logging provides accurate and reliable data and is especially important in locations where collecting core samples is difficult and from poorly consolidated facies, weathered zones, soft formations and shallow boreholes as examples.

Rock strength can be estimated using measurements derived from Sonic and Density logs. One common technique uses the seismic compressional (P) velocity to estimate Unconfined Compressive Strength (UCS). The P-wave velocity can also be combined with the flexural (S) wave velocity and density to give stress/strain properties including Poisson’s ratio, bulk modulus and Young’s modulus. The Robertson Geo PS Logger probe includes a dipole source for measurement of P and S velocities in soft formations.

Fractures, faults and voids can be detected using various imaging tools to characterise features intersecting the borehole wall, including bedding, drilling-induced/natural fractures and faults. Integrated orientation measurements allow the inclination and direction of features to be understood relative to the borehole dip direction, or true or magnetic north and Sonar Caliper surveys are used to map underground voids and disused mine workings aiding risk assessment and remediation planning.

Robertson Geo uses its own designed and built instrumentation, proved to provide quality data acquisition over a broad range of international geotechnical applications including:

- Foundation engineering
- Slope stability studies
- Fracture detection and analysis
- Earthquake engineering
- QA checking for piles and diaphragm walls
- In-situ testing of the soil/rock
- Location of voids and old mine workings
- Mine safety

Logging services

Robertson Geo engineers are experienced, highly trained and fully certified for underground and surface mine working and can be deployed to any global location.

The complete catalogue of equipment is available on a service basis operated by these field crews. They are capable of prolonged logging services with minimum outside support and are expert in data processing and interpretation.

These are very cost effective contracting services in circumstances where projects do not justify purchasing equipment and the necessary back up facilities.

Equipment supply

All Robertson Geo probes are fully tested and calibrated at the Deganwy facility prior to dispatch, eliminating testing time on site and ensuring the probes are fully operational prior to downhole use.

Depending on customer needs operational and customised training can be provided; this for winch use, probe deployment, logging techniques, data capture and equipment maintenance and troubleshooting.

Equipment rental

Robertson Geo equipment is available to rent with a minimum rental period of 3 days in the USA or 15 days elsewhere. Full systems (including winches) or individual probes can be rented as required with borehole and classroom based training made available for rental customers.

In-house data management and log processing services are available for rental equipment clients, at an additional cost.
Robertson Geo is the only logging services provider with a QMS certified to ISO 9001, comprehensively calibrating all of its logging systems and uniquely using an on-site borehole for testing at its Deganwy test well and calibration facility.

In an industry where compliance and traceability are fundamental, all probes come with a certificate of conformity, and a probe maintenance service is available to verify functionality and calibration.

Probes

High Resolution Acoustic Televiewer (HRAT): used for borehole imaging in fluid and mud filled boreholes. The probe provides a 360° ‘unwrapped’ and orientated ultrasound image of the borehole walls. The probe is ideal for fracture identification and orientation (dip and direction), stratigraphic studies, local stress analysis (breakouts) and core orientation. See page 6

High Resolution Optical Televiewer (HI-OPTV): provides a continuous very high-resolution oriented image of the borehole walls. The probe can be used in dry and water (clear fluid) filled boreholes. The probe offers a full colour image of the borehole, which can assist in mineral identification, it is ideal for fracture identification and orientation (dip and direction), stratigraphic studies, mineral identification and core orientation. See page 7

Formation Density: uses multiple detectors to provide an accurate borehole-compensated density measurement with excellent bed-boundary resolution. This can be used to determine lithology, density and porosity, rock strength and elasticity parameters when combined with the sonic probe and detection of weathered or fractured zones. See page 8

PS Logger: a low-frequency acoustic tool designed to measure compressional and shear-wave velocities in soils and soft rock formations. The probe is critical for earthquake engineering applications and also the tool for choice for offshore structures and windfarms. See page 9

Full-Waveform Sonic: can be used in three modes depending on application - compensated sonic, full-wave form or cement bond mode. The probe can help determine lithology, porosity, rock strength and elasticity properties, correction of seismic velocity, fracture and permeability induction in hard rock, and poor and missing cement behind casing. See page 10

Dual Neutron: provides an accurately calibrated borehole compensated neutron porosity measurement in mud-filled open holes. It is the probe of choice for quantitative formation-fluid studies. The measurement can help determine lithology identification, location of aquifer and aquitard. See page 11

Sonar Caliper: has been developed to provide a scaled and orientated cross-section of large bores, shafts, caverns and trench walls; combining accurate diameter measurement with a fully orientated 360° view of its surroundings. See page 12

3-Arm Caliper: measures the diameter of the borehole as a continuous record against depth. It is used as a check of borehole condition before casing operations or before running more expensive logging probes. It also provides a borehole volume for grout quantity design. See page 13

Vertically: the verticality of a borehole is key to determining the actual location and depth of a potential order body, as the vertical depth is often different to the drilled depth and is therefore critical for mine design. An alternative, the Gyro probe provides the same information in the presence of steel casing. See page 14

Gyro: acquires borehole inclination/azimuth logs in situations where metal casing or magnetic materials around the borehole prevent use of the standard verticality probe. The 3D-magnetometer version also acquires 3D-magnetic data for location of magnetic ore bodies. See page 15

Elastometer: a borehole lateral load tester designed to figure out deformation characteristics of the ground ranging from soft rock to hard rock. The deformation characteristics become useful information especially for the construction of large scale structures such as dams, bridges and high-rise buildings. See page 16

Surface equipment

Micrologger2: surface interface system for handling logging data acquisition, which supports all Robertson Geo probes, including acoustic and imaging tools.

Despite its small size, the Micrologger2 is equally at home as a portable system or with 2,000m of cable in a large truck. Its advanced features ensure long term reliability and freedom from drift or errors. See page 17

Winlogger: MS Windows based operating system for the Micrologger2, provides field acquisition capability. In-house processing, interpretation and reporting is undertaken. See page 17

Winches: Robertson Geo designs and builds its own range of winches of varying capacities for deploying subsurface probes on 4-core or coaxial cable.

- 1000m/2000m Winch
- 2000m Marine Winch
- 3000m Winch

From the battery-powered 175m Mini Winch to the heavy-duty 3,000m and Marine unit, each is precision engineered for reliable operation under arduous field conditions. Robertson Geo winches are feature-laden and include auto-level wind, tension measurement and integral depth encoder and are all compatible with the Micrologger2. See pages 18-19
Geotechnical Applications

Representative examples to show Essential, Intermediate and Advanced systems as a benchmark for identifying the level of data and interpretation required for individual locations and characteristics.

Robertson Geo support teams are always available for further information and discussion when considering system applications at support@robertson-geo.com

<table>
<thead>
<tr>
<th>Essential</th>
<th>Intermediate</th>
<th>Advanced</th>
</tr>
</thead>
<tbody>
<tr>
<td>Micrologger2</td>
<td>Micrologger2</td>
<td>Micrologger2</td>
</tr>
<tr>
<td>Winch (Mini)</td>
<td>Winch (Mini/500m/600m)</td>
<td>Winch (500m/2,000m)</td>
</tr>
<tr>
<td>High Resolution Acoustic Televiewer Probe</td>
<td>High Resolution Acoustic Televiewer Probe</td>
<td>High Resolution Acoustic Televiewer Probe</td>
</tr>
<tr>
<td>and/or</td>
<td>High Resolution Optical Televiewer Probe</td>
<td>High Resolution Optical Televiewer Probe</td>
</tr>
<tr>
<td>3-Arm Caliper Probe</td>
<td>3-Arm Caliper Probe</td>
<td>3-Arm Caliper Probe</td>
</tr>
<tr>
<td></td>
<td>Formation Density Probe</td>
<td>Formation Density Probe</td>
</tr>
<tr>
<td></td>
<td>PS Logger Probe</td>
<td>PS Logger Probe</td>
</tr>
<tr>
<td></td>
<td>Elastmeter</td>
<td>Elastmeter</td>
</tr>
<tr>
<td></td>
<td>Verticality</td>
<td>Verticality</td>
</tr>
<tr>
<td></td>
<td>and/or Gyro</td>
<td>and/or Gyro</td>
</tr>
</tbody>
</table>

See probe and surface equipment specifications pages 6 through 19
The High Resolution Acoustic Televiewer (HRAT) provides a continuous high-resolution oriented ultrasound image of the borehole wall.

The probe uses a fixed acoustic transducer and a rotating acoustic mirror to scan the borehole walls with a focused ultrasound beam. The amplitude and travel time of the reflected acoustic signal are recorded as separate image logs. Features such as fractures reduce the reflected amplitude and appear as dark sinusoidal traces on the log. The travel-time log is equivalent to a 360-arm caliper and shows diameter changes within open fractures and ‘break-outs’. Directional information is also recorded and used to orient the images in real time.

SPECIFICATION:

Applications
- Fracture identification and orientation
- Stratigraphic studies
- Local stress studies (break-out)
- Core orientation
- Cased-hole studies

Operating Conditions
- Borehole Type: Fluid filled
- Recommended Logging Speed: 2.5m/min

Specifications
- Diameter: 42mm
- Length: 1.55m or 1.99m (with natural gamma option)
- Weight: 5kg
- Temperature (max): 70°C
- Transducer type: 1.5MHz piezo-composite
- Rotation rate: 5 – 20rev/s
- Sample rate: up to 360/rev

Part Numbers
- I002164 HRAT probe
- I002162 HRAT including natural-gamma

Acquisition of HRAT data with Micrologger2

Example of logging data
The High Resolution Optical Televiewer (Hi-OPTV) provides a continuous very high resolution oriented image of the borehole walls using a conventional light source. A unique optical system based on a fisheye lens allows the probe to survey 360 degrees simultaneously. This information is processed in real time to produce a complete ‘unwrapped’ image of the borehole oriented to magnetic north. The probe offers superior resolution to the High Resolution Acoustic Televiewer (HRAT) and produces images in real colour. While, unlike the HRAT, it can operate in air-filled boreholes, it is unsuitable for boreholes containing mud or cloudy fluids.

WellCad™ Image-processing software:

WellCad™ is a Windows-based package for processing, interpreting and displaying acoustic and optical televiewer image logs. Standard log presentations include tadpole and stick plots, stereographic projections of poles to planes and azimuth frequency diagrams. The synthetic core display allows convenient comparison of log and field data for orientation of fractured or incomplete core sections.

SPECIFICATION:

Applications
- Fracture identification and orientation
- Stratigraphic studies
- Local stress studies (break-out)
- Core orientation
- Cased hole studies

Operating Conditions
- Borehole Type: Air filled or clear fluid
- Recommended Logging Speed: 3m/min

Specifications
- Length: 2.13m - 2.14m (10MPa/20MPa window)
- Diameter: 46mm (10MPa) & 58mm (20MPa)
- Weight: 6kg (10MPa) or 7.2kg (20MPa)
- Temperature (max): 60°C
- Circular resolution: user definable 360/540/720/900/1080/1260/1440 pixels
- Sensor type: 1280 x 1024 pixels CMOS image sensor
- Colour resolution: 24 bit RGB

Part Numbers
- I0017187: Hi-OPTV probe (46mm)
- I0017188: Hi-OPTV probe (46mm) with gamma
- I0017125: Hi-OPTV probe (58mm)
- I0017226: Hi-OPTV probe (58mm) with gamma
- I0015464: Gamma Test Blanket

WellCAD™ Image-processing software
- I000942: WellCAD™ Software
- I000944: WellCAD™ Image Module

Examples of logging data
The Formation Density probe uses dual shielded detectors to provide a borehole-compensated density measurement with good bed-boundary resolution.

The Density Guardlog probe offers an additional LL3 focussed electrical measurement with good vertical resolution and depth of investigation. The Iron Ore Density probe includes extra collimation, different source-detector spacings and a higher activity source to extend the density range to 5g/cc for iron ore logging.

Principle of Measurement:

The probes contain a detachable 137Cs gamma source and two scintillation gamma detectors. The active windows of the source and detectors are maintained in contact with the borehole wall by a motorised caliper arm. Gamma radiation back-scattered by the formation (Compton effect) reaches the detectors where the relative count rates provide a measure of formation density.

SPECIFICATION:

Features
- Compensated density output in engineering units (g/cc)
- Short-spacing detector for high vertical resolution
- Tungsten shielding reduces borehole effects
- Standard calibration blocks for field or base use

Measurements
- Bulk density
- High-resolution density (HRD)
- Natural gamma
- Caliper
- Options: Guard resistivity, Bed-resolution density (BRD), Temperature
- Dual calibrated density channels
- Fluid Temperature

Applications

Minerals:
- Density and porosity
- Lithology
- Bed thickness and boundary location
- Coal ash and moisture content

Engineering:
- Rock strength and elasticity parameters (with sonic log)
- Detection of weathered or fractured zones

Water:
- Location of aquifer and aquitard
- Detection of cavities and missing cement

Operating Conditions

Borehole type: All, including air filled (qualitative measurement only)

Recommended Logging Speed: 4m/min

Specifications

- Diameter: 51mm
- Length: Formation Density 3.04m / Density Guardlog 2.89m
- Weight: 21kg (Density Guardlog 28.5kg)
- Temperature: 0-70⁰C (extended ranges available)
- Max. pressure: 20MPa
- Density range: 1.1 to 2.95g/cc (Formation Density and Density Guardlog probes) / 1.5 to 5.0g/cc (Iron Ore Density probe)
- Caliper range: 50mm to 300mm
- Resistivity range: 1/10000 ohm-m

Part Numbers

- 1002013: Formation Density probe
- 1002016: Includes BRD and temperature
- 1014720: Density Guardlog probe with BRD
- 1018309: Iron Ore Density probe
The PS Logger probe is a low-frequency acoustic sonde designed to measure compressional and shear-wave velocities in soils and soft rock formations. It operates using indirect excitation rather than mode conversion as in a conventional sonic. It is capable of acquiring high resolution P and S wave data in borehole depths of up to 600m in water.

Principle of Measurement:
The PS Logger probe contains a unique design of powerful hammer source and two receivers, separated by acoustic damping tubes. To acquire data, the probe is stopped at the required depth and the source is fired under surface command. Firing causes a solenoid-operated shuttle aligned across the borehole axis to strike plates on opposite sides of the probe in turn, setting up a pressure doublet in the surrounding fluid. The resultant fluid motion produces a tube wave at the borehole wall with velocity close to the shear velocity of the formation together with a compressional wave.

As the waves propagate parallel to the borehole axis, they set up corresponding fluid movements that are detected by the two neutral buoyancy 3D hydrophone receivers and geophones, allowing the wave velocity to be determined. The facility to stack multiple shots and filter the data as in normal seismic data acquisition is included in the operating software.

SPECIFICATION:

Features
- High energy shear-wave source has typically 20x power of conventional sonic probes
- Low-frequency measurement, more representative of engineering situations
- Stacking of multiple shots
- Probe separates for shipping
- Real-time wavelet (wiggle) display
- Compatible with Robertson Geo Micrologger2

Measurements
- Formation compressional wave velocity
- Formation shear-wave velocity

Applications
- Site Investigation - foundation studies, windfarms, offshore structures, dam safety
- Physical properties of soil/rock - shear modulus, bulk modulus, compressibility and Poisson’s ratio
- Earthquake engineering - characterization of strong motion sites
- Velocity control for seismic reflection surveys

Operating Conditions
- Borehole type: open-hole, water-filled
- Recommended Logging Speed: Static measurements

Specifications
- Diameter: 50mm
- Assembled length: 6.07m - 7.07m (1 or 2m filter)
- Shipping case length: 1.45m (4.75ft) supplied in two transport cases
- Assembled weight: 26.5kg - 28kg (1 or 2m filter)
- Max. temperature: 70°C
- Max. pressure: 6.5MPa
- Transducer type: solenoid and hammer
- Receiver type: 3D hydrophones (p), geophones (s)
- Receiver spacing: 1000mm (3.28ft)
- Waveform acquisition period: 5.12mS to 409.6mS
- Sampling: 2.5μs minimum
- Down-hole gain: 0db to 42db (surface control)

Part Numbers
- I002244 PS Logger probe in carrying case
The Full Waveform Sonic probe uses a dual-transmitter dual-receiver array to provide high quality formation acoustic-velocity data. Options are available for display of full-waveform data and cement-bond data (CBL) in cased boreholes.

Principle of Measurement:
A piezoelectric transmitter stimulated by a high-voltage pulse radiates a high-frequency acoustic wavelet. This is coupled via the borehole fluid and formation to each receiver. An accurate quartz clock measures the first arrival transit time. The first arrival in open hole corresponds to the p-wave path in the formation.

Full Waveform Sonic mode: Two pairs of transmitters and receivers are used to allow cancellation of the borehole fluid path and determination of formation velocity (slowness). The full sonic waveform from both receivers is displayed as a variable-density log (VDL) or waveform (‘wiggle’) trace.

Cement Bond Log (CBL) mode: The probe records the amplitude and arrival time of the first casing arrival at the near receiver and full sonic waveforms from both receivers.

SPECIFICATION:

Features
- Down-hole digitisation of waveform data
- Compensation for poor centralisation or caving
- Variable density log (VDL) or wavelet (‘wiggle’) display

Measurements
- Formation velocity (slowness)
- Shear (S) velocity (where shear wave exists)
- Full waveform Time of first arrival (delta-t)
- Amplitude of first arrival (CBL)
- Integrated transit time
- Natural Gamma optional

Applications
- Water / Minerals / Engineering
 - Porosity
 - Rock strength and elasticity (with density log)
 - Fracture and permeability indication in hard rock
 - Location of poor or missing cement behind casing

Operating Conditions
- Borehole type:
 - Sonic: open-hole, water-filled
 - CBL: cased-hole, water-filled
- Centralisation: required

Specifications
- Diameter: 60mm
- Length: 4.36m (4.78m with gamma)
- Weight: 30kg (33kg with gamma)
- Temperature: 0-70°C (extended ranges available)
- Max. pressure: 20MPa

Part Numbers
- 1002128 Full Waveform Sonic probe with CBL

Example of logging data
The Dual Neutron probe provides a calibrated borehole-compensated neutron porosity measurement in mud-filled open holes. It is the probe of choice for quantitative formation-fluid studies. A single-detector neutron probe is also available for qualitative porosity logging under most borehole conditions including through steel or plastic casing and drill-pipe.

Principle of Measurement:

The Dual Neutron measurement uses two 3He proportional detectors and a detachable, sealed 241Am-Be neutron source. Fast neutrons emitted by the source are scattered and slowed to thermal levels, principally by hydrogen in the formation. The ratio of the neutron flux reaching the near and far detectors depends on the hydrogen index and porosity. Use of dual detectors and a ratio method provides a porosity measurement compensated for borehole diameter but not independent of it.

SPECIFICATION:

- **Features**
 - Real-time porosity measurement
- **Measurements**
 - Compensated porosity
 - Neutron (raw counts)
 - Natural gamma
 - Option: Casing-collar locator (CCL)
- **Applications**
 - Minerals / Water / Engineering: Lithology identification, Location of aquifer and aquitard, Fracture analysis in coals, Correlation between open and cased-hole logs, Strata correlation between wells
- **Operating Conditions**
 - Borehole type: open/cased, water-filled
 - Centralisation: ex-centralised with bowspring
 - Recommended Logging Speed: 4m/min
- **Specifications**
 - Diameter: 65mm
 - Length: 2.14m
 - Weight: 19.5kg
 - Temperature: 0-70°C (0-125°C optional)
 - Max. pressure: 20MPa
 - Range: 15 to 45% Limestone Porosity Units (LPU)
- **Part Numbers**
 - I002029 Dual Neutron probe with natural gamma
 - I002030 - includes CCL

Example of logging data

www.robertson-geo.com
Sonar Caliper

The Sonar Caliper Probe has been developed to provide a scaled and orientated cross-section of large bores, shafts, caverns and trench walls; combining accurate diameter measurement with a fully orientated 360° view of its surroundings.

700kHz and 200kHz models are available to suit varying in-situ fluid conditions.

Principle of Measurement:
Sonar operates by emitting a pulse of sound that is reflected by a solid object; timing the delay between emission and the arrival of the reflected sound wave back at the probe allows for a calculation of distance. The Sonar Caliper Probe makes 400 individual radius measurements in a 360° arc around the probe and then orientates them to magnetic north.

SPECIFICATION:

Features
- Real time large diameter measurement
- Layout orientation/mapping

Measurements
- Spatial diameter
- Orientation
- Spatial volume – derived value

Applications
- Large diameter boreholes (> 1500mm)
- Trench walls
- Shafts, caverns and voids

Operating Conditions
- Borehole type: Fluid filled
- Centralisation: Vertical borehole and central suspension point are advisable
- Recommended Logging Speed: Stationary at discreet points

Specifications
- Max Diameter: 700kHz - 75mm
 200kHz - 100mm
- Length: 1.51m
- Weight: 16kg
- Temperature: 70°C
- Pressure: 10MPa
- Range: 700kHz - 50m in clear water and brines
 200kHz - TBA

Part Numbers
- I002193 Sonar Caliper Probe
The 3-Arm Caliper probe provides a single continuous log of borehole diameter as recorded by three mechanically coupled arms in contact with the borehole wall. 710mm, 1000mm and 1500mm range calipers are available to suit a range of well diameters. The caliper is a useful first log to determine the borehole conditions before running more costly probes or those containing radioactive sources.

Principle of Measurement:
Opening and closing of the motor-driver caliper arms is by surface command, allowing the probe to run into the borehole with the arms retracted. Once opened, the spring-loaded arms respond to borehole diameter variations as the probe is raised up the borehole.

SPECIFICATION:

Features
- Small diameter for slim-hole operation
- Extension arms supplied as standard for 38mm version
- Optional natural-gamma measurement
- Optional casing collar locator

Measurements
- CCL (optional)
- Borehole volume (derived)
- Natural Gamma (optional)
- Borehole volume

Applications
- Minerals/Water/Engineering
- Location of borehole collapse or obstructions
- Cement volume calculations for grouting
- Identification of hard and soft lithology
- Location of cracks, fissures, caving, faulting, casing breaks
- Correction of other logs affected by borehole diameter

Operating Conditions
- Borehole type: open/cased; water/air-filled
- Centralisation: recommended in large holes
- Centralisation: recommended in inclined holes
- Recommended Logging Speed: 5m/min

Specifications
- Temperature: 0-70°C (extended ranges available)
- Max. pressure: 20MPa

3-Arm Caliper (710mm range)
- Diameter: 38mm
- Length: 2.18m-2.68m (depending on CCL and extended arms)
- Weight: 7.5kg
- Range: 40-300mm and 40-710mm

3-Arm Caliper (1000mm range)
- Diameter: 60mm
- Length: 2.83m
- Weight: 15kg
- Range: 65-1000mm

3-Arm Caliper (1500mm range)
- Diameter: 80mm
- Length: 3.14m
- Weight: 17.5kg
- Range: 100 - 1600mm

Part Numbers
- 1002035 3-Arm Caliper (710mm range) with arm extension kit and calibrator
- 1002037 – including natural gamma
- 1002041 3-Arm Caliper (1000mm range) with calibrator
- 1002052 3-Arm Caliper (1500mm range)
The Verticality probe provides accurate, continuous measurements of borehole inclination and direction. These are output directly as log traces or may be processed further to produce tabular and graphical outputs of borehole position, borehole drift and true vertical depth.

Principle of Measurement:

The probe includes a triaxial magnetometer to determine the bearing of a reference in the probe relative to magnetic North and three accelerometers to measure inclination. The outputs from the transducers are processed by a downhole microprocessor to give final borehole inclination and azimuth data in real time.

SPECIFICATION:

Features
- Small diameter for slimhole operations
- Continuous borehole orientation log
- Suitable for all borehole inclinations and directions

Measurements
- Borehole inclination
- Borehole direction
- Borehole drift
- True vertical depth
- Natural Gamma

Applications
- Minerals / Water / Engineering
 - Bed-thickness estimation
 - Surveying and deviation checks
 - True seam depth

Operating Conditions
- Borehole type: open/plastic-cased, water/air-filled
- Centralisation: non-magnetic centralisers required
- Recommended Logging Speed: 4m/min
- The operation of the probe is limited in steel casing or in the presence of magnetic minerals which affect the magnetometer. Under such conditions, only borehole inclination (without directional information) can be logged. The Gyro probe should be used in preference to the standard verticality probe in such cases.

Specifications
- Diameter: 42mm
- Length: 1.66m
- Weight: 5.5kg
- Temperature: 0-70°C (extended ranges available)
- Max. pressure: 20MPa
- Inclination range: Horizontal +/- 90°
- Azimuth range: 0 to 360°

Part Numbers
- I002141 Verticality probe with natural gamma

Examples of logging data
The Gyro probe acquires borehole inclination/azimuth logs in situations where metal casing or magnetic materials around the borehole prevent use of the standard verticality probe.

The Gyro Magnetometer version also acquires 3D-magnetic data for location of magnetic ore bodies.

Principle of Measurement:
The standard probe includes a gimbal-mounted directional gyroscope for orientational measurement and three accelerometers for inclination. In the Gyro Magnetometer probe, an additional triaxial fluxgate magnetometer continuously measures X, Y and Z magnetic components. These are used to compute the magnitude and direction of the magnetic field around the probe.

SPECIFICATION:

Features
- Continuous log of borehole inclination/azimuth
- Not influenced by metal casing or magnetic materials
- Low drift compared to 'rate' gyroscopes
- Natural-gamma measurement
- Magnitude and direction of surrounding magnetic field

Measurements
- Borehole inclination
- Borehole drift
- True vertical depth
- Natural Gamma
- Magnitude and direction of surrounding magnetic field

Applications
- **Water / Minerals / Engineering**
 - Verticity measurements in steel casing or in the presence of magnetic ores
 - Detection of nearby magnetic ore bodies (Gyro Magnetometer probe)

Operating Conditions
- Borehole type: open/cased hole; water/air-filled
- Centralisation: required
- Recommended Logging Speed: 3m/min

Specifications
- Diameter: 45mm
- Length: 2.29m
- Weight: 12kg
- Temperature: 0-70°C (extended ranges available)
- Max. pressure: 20MPa
- Inclination range: 0 to 30°
- Azimuth range: 0 to 360°
- Magnetometer range: +/-100 μT

Part Numbers
- I002150 Gyro probe with natural gamma
- I014559 Gyro Magnetometer probe with natural gamma

Examples of logging data
The Elastmeter is a borehole lateral load tester designed to figure out deformation characteristics of the ground ranging from soft rock to hard rock. The deformation characteristics become useful information especially for the construction of large scale structures such as dams, bridges and high-rise buildings.

The Elastmeter has a range of probes to provide pressuremeter tests of rock in BQ (60 mm), NQ (76 mm) and HQ (98 mm) boreholes. Both pressure and displacement are measured directly in the probe using electrical transducers. A mechanical arm is used for the measurement of displacement making maintenance easier. Applied pressure is measured by a precise semi-conductor transducer in the probe.

Pressuremeter and data recorder:
The system comes complete with data recorder, probe and cables for up to 200m use.

SPECIFICATION:

Specifications

<table>
<thead>
<tr>
<th>Probe Types:</th>
<th>BQ (60 mm), NQ (76 mm) and HQ (98 mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max Pressure:</td>
<td>20MPa</td>
</tr>
<tr>
<td>Deformation range:</td>
<td>BQ Probe 66-80mm, NQ Probe 76-90mm, HQ Probe 100-115mm</td>
</tr>
<tr>
<td>Probe Diameter:</td>
<td>BQ Probe 62mm, NQ Probe 72mm, HQ Probe 96mm</td>
</tr>
<tr>
<td>Weight:</td>
<td>BQ Probe 20kg, NQ Probe 20kg, HQ Probe 30kg</td>
</tr>
</tbody>
</table>

Part Numbers

- Model 4023: Elast Recorder
- Model BQ: Elastmeter Probe BQ
- Model NQ: Elastmeter Probe NQ
- Model HQ: Elastmeter Probe HQ
- Model 4185: High Pressure Pump
- 04181-2001: Control Cable 100m
- Model 4153: High Pressure Cable
- 04181-4024: Carrying case for probe - wooden
- 04149-6005: Tool Kit
- 04154-4005: Calibration pipe 76mm I.D for NX
- 04154-4007: Calibration pipe 82mm I.D for NX
- 15491-2010: Packer tube for NX - hard
- 01167-0501: Battery pack with carrying bag
- 12539-2015: Battery charger - 100 or 220V AC
- 12539-9001: Step-down transformer
Micrologger2

Micrologger2 is the surface interface system for handling logging data acquisition. It supports all Robertson Geo probes including acoustic and imaging tools.

Compact and lightweight Micrologger2 is probably the most powerful portable logging system around and with over 600 units used around the globe it has a proven record for its reliability and technology.

SPECIFICATION:

Features

- Logging
- Supports Robertson Geo and many third-party probes
- USB high-speed link to PC Compatible with most winches/cables
- Real-time data display and printing
- Supports Windows™ printers
- Data output in LAS and Robertson Geo formats
- Modular construction for easy field maintenance

Part Numbers

- 1000184 Robertson Geo USB Micrologger2
- 1000204 110/220VAC power supply for ML2 and winch (up to 500m)
- 1000197 Canvas bag for Micrologger2
- 1013689 Robertson Geo Micrologger2 (video capability installed)
- 1000192 Micrologger2 12V PSU (Black Box)
- 1000211 Notebook PC using latest Windows software
- 1000213 Semi-Ruggedised notebook PC using latest Windows software
- 1014942 Fast Thermal Printer for continuous plots (Desk Top)
- 1014946 Fast Thermal Printer for continuous plots (Rack Mounted)

Winlogger Software

Winlogger is the MS Windows based operating system for the Micrologger2, providing field acquisition capability, processing and reporting for the full range of Robertson Geo probes.

It is easy to operate, retaining a standard Windows™ look using familiar tool bars and drop-down menus for all frequently needed functions.

The package incorporates powerful features including a built-in compiler to allow the more advanced user to construct custom ‘User Functions’ to process multichannel data in real time during logging.

Robertson Geo Winlogger is supplied with a multi-user licence allowing free distribution of the software to any user of Robertson Geo log data.

This policy has proved popular with wireline service companies who may provide Winlogger to clients to allow them to replay or reprocess data in-house without resorting to 3rd-party packages.

SPECIFICATION:

Features

- Support for all Robertson Geo digital slim-hole probes
- Screen/printer log display in calibrated engineering units
- Selectable depth sample interval (1, 2, 5, 10 cms etc)
- Metric and imperial logs in API format
- Custom logos and headers Data export in ASCII (LAS) format
- Compatible with Windows 10 and earlier OS

Part Numbers

- 1000466 Winlogger software

www.robertson-geo.com
Robertson Geo designs and builds its own range of winches of varying capacities for deploying subsurface probes on 4-core or co-axial cable. Each winch is precision engineered for reliable use in the most challenging field applications. The winches are fully compatible with the Micrologger2 surface system and the full range of Robertson Geo probes, for depths of up to 3,000m.

Mini Winch

The Robertson Geo Mini Winch is portable, compact and robust. Its basic ‘no-frills’ design is aimed at long-term reliability under arduous conditions.

SPECIFICATION:

<table>
<thead>
<tr>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity:</td>
</tr>
<tr>
<td>Speed:</td>
</tr>
<tr>
<td>Motor:</td>
</tr>
<tr>
<td>Size:</td>
</tr>
<tr>
<td>Weight:</td>
</tr>
</tbody>
</table>

Part Numbers

- T013754 Mini Winch includes power and data cables
- T001117 Mini Winch Tripod with Encoder

500m Winch

A robust heavy-duty unit, the 500m Winch can be operated from a vehicle battery and is ideal for heavier probes in shallow boreholes.

SPECIFICATION:

<table>
<thead>
<tr>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity:</td>
</tr>
<tr>
<td>Speed:</td>
</tr>
<tr>
<td>Motor:</td>
</tr>
<tr>
<td>Size:</td>
</tr>
<tr>
<td>Weight:</td>
</tr>
</tbody>
</table>

Part Numbers

- T001019 500m winch including tripod, power and data cable

600m Winch

Of similar basic construction to the 500m winch, the 600m is mains/generator powered.

SPECIFICATION:

<table>
<thead>
<tr>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity:</td>
</tr>
<tr>
<td>Speed:</td>
</tr>
<tr>
<td>Motor:</td>
</tr>
<tr>
<td>Size:</td>
</tr>
<tr>
<td>Weight:</td>
</tr>
</tbody>
</table>

Part Numbers

- T001043 600m winch including tripod, power and data cable
1000m/2000m Winch | 3000m Winch

2000m Marine Winch

Robertson Geo designs and builds its own range of winches of varying capacities for deploying subsurface probes on 4-core or co-axial cable.

Each winch is precision engineered for reliable use in the most challenging field applications. The winches are fully compatible with the Micrologger2 surface system and the full range of Robertson Geo probes, for depths of up to 3,000m.

1000m/2000m Winch

The standard unit for truck-mounted operations in deep boreholes, the 2000m winch includes an integral depth wheel and an automatic level wind.

3000m Winch

A heavy-duty electric draw-works designed for deeper hole and oil/gas investigations. Please note the pressure limits of standard Robertson Geo slimhole tools.

2000m Marine Winch

Working experience by Robertson Geo offshore logging crews has led to the modification of the 2000m Winch and the introduction of a Marine variation to resist corrosive, saline conditions.

The communications box is waterproofed and filled with silicon to protect the electronics. Grade 316 stainless steel has been introduced to replace standard steel components. 316 contains the alloy molybdenum, significantly enhancing corrosion resistance, especially for more saline or chloride exposed environments. 316 components include structural frames, depth wheel, panels, spacers, shafts and gears, sprockets and chains.

SPECIFICATION:

Specifications

<table>
<thead>
<tr>
<th>Capacity</th>
<th>2030m (6658’) 3/16” 4-core cable</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1030m (3378’) 1/4” coaxial cable</td>
</tr>
<tr>
<td>Speed</td>
<td>0 – 30m/min (0 – 99ft/min)</td>
</tr>
<tr>
<td>Motor</td>
<td>2hp (1.5kW) at 110/220VAC</td>
</tr>
<tr>
<td>Size</td>
<td>605(w) x 1060(l) x 735(h) mm</td>
</tr>
<tr>
<td>Weight</td>
<td>142kg excluding cable</td>
</tr>
</tbody>
</table>

Part Numbers

| 1001021 | 2000m winch for 3/16” 4-core cable includes tripod, power and data cable |
| 1001034 | 1000m winch for 1/4” coaxial cable includes tripod, power and data cable |

SPECIFICATION:

Specifications

<table>
<thead>
<tr>
<th>Capacity</th>
<th>3000m (9840’) 3/16” cable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed</td>
<td>0.2 – 34m/min rim: 0.5 – 100m/min</td>
</tr>
<tr>
<td>Pull</td>
<td>1,350kgF Rim: 460kgF</td>
</tr>
<tr>
<td>Motor</td>
<td>440VAC 3-Phase 4kVA</td>
</tr>
<tr>
<td>Dimensions</td>
<td>1000(w) x 1100(l) x 900(h) mm</td>
</tr>
<tr>
<td>Weight</td>
<td>415kg excluding cable</td>
</tr>
</tbody>
</table>

Part Numbers

| 1013866 | 3000m winch for 3/16” four-core system includes tripod, power and data cable |

SPECIFICATION:

Specifications

<table>
<thead>
<tr>
<th>Capacity</th>
<th>2030m (6658’) 3/16” 4-core cable</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1030m (3378’) 1/4” coaxial cable</td>
</tr>
<tr>
<td>Speed</td>
<td>0 – 30m/min (0 – 99ft/min)</td>
</tr>
<tr>
<td>Motor</td>
<td>2hp (1.5kW) at 110/220VAC</td>
</tr>
<tr>
<td>Size</td>
<td>605(w) x 1060(l) x 735(h) mm</td>
</tr>
<tr>
<td>Weight</td>
<td>142kg excluding cable</td>
</tr>
</tbody>
</table>

Part Numbers

| 1019167 | 2000m Marine Winch |

www.robertson-geo.com
See our complete range of market-sector brochures: